(v-7)+(5v^2+12v-7)+(13v^2-7v+9)=

Simple and best practice solution for (v-7)+(5v^2+12v-7)+(13v^2-7v+9)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (v-7)+(5v^2+12v-7)+(13v^2-7v+9)= equation:


Simplifying
(v + -7) + (5v2 + 12v + -7) + (13v2 + -7v + 9) = 0

Reorder the terms:
(-7 + v) + (5v2 + 12v + -7) + (13v2 + -7v + 9) = 0

Remove parenthesis around (-7 + v)
-7 + v + (5v2 + 12v + -7) + (13v2 + -7v + 9) = 0

Reorder the terms:
-7 + v + (-7 + 12v + 5v2) + (13v2 + -7v + 9) = 0

Remove parenthesis around (-7 + 12v + 5v2)
-7 + v + -7 + 12v + 5v2 + (13v2 + -7v + 9) = 0

Reorder the terms:
-7 + v + -7 + 12v + 5v2 + (9 + -7v + 13v2) = 0

Remove parenthesis around (9 + -7v + 13v2)
-7 + v + -7 + 12v + 5v2 + 9 + -7v + 13v2 = 0

Reorder the terms:
-7 + -7 + 9 + v + 12v + -7v + 5v2 + 13v2 = 0

Combine like terms: -7 + -7 = -14
-14 + 9 + v + 12v + -7v + 5v2 + 13v2 = 0

Combine like terms: -14 + 9 = -5
-5 + v + 12v + -7v + 5v2 + 13v2 = 0

Combine like terms: v + 12v = 13v
-5 + 13v + -7v + 5v2 + 13v2 = 0

Combine like terms: 13v + -7v = 6v
-5 + 6v + 5v2 + 13v2 = 0

Combine like terms: 5v2 + 13v2 = 18v2
-5 + 6v + 18v2 = 0

Solving
-5 + 6v + 18v2 = 0

Solving for variable 'v'.

Begin completing the square.  Divide all terms by
18 the coefficient of the squared term: 

Divide each side by '18'.
-0.2777777778 + 0.3333333333v + v2 = 0

Move the constant term to the right:

Add '0.2777777778' to each side of the equation.
-0.2777777778 + 0.3333333333v + 0.2777777778 + v2 = 0 + 0.2777777778

Reorder the terms:
-0.2777777778 + 0.2777777778 + 0.3333333333v + v2 = 0 + 0.2777777778

Combine like terms: -0.2777777778 + 0.2777777778 = 0.0000000000
0.0000000000 + 0.3333333333v + v2 = 0 + 0.2777777778
0.3333333333v + v2 = 0 + 0.2777777778

Combine like terms: 0 + 0.2777777778 = 0.2777777778
0.3333333333v + v2 = 0.2777777778

The v term is 0.3333333333v.  Take half its coefficient (0.1666666667).
Square it (0.02777777779) and add it to both sides.

Add '0.02777777779' to each side of the equation.
0.3333333333v + 0.02777777779 + v2 = 0.2777777778 + 0.02777777779

Reorder the terms:
0.02777777779 + 0.3333333333v + v2 = 0.2777777778 + 0.02777777779

Combine like terms: 0.2777777778 + 0.02777777779 = 0.30555555559
0.02777777779 + 0.3333333333v + v2 = 0.30555555559

Factor a perfect square on the left side:
(v + 0.1666666667)(v + 0.1666666667) = 0.30555555559

Calculate the square root of the right side: 0.552770798

Break this problem into two subproblems by setting 
(v + 0.1666666667) equal to 0.552770798 and -0.552770798.

Subproblem 1

v + 0.1666666667 = 0.552770798 Simplifying v + 0.1666666667 = 0.552770798 Reorder the terms: 0.1666666667 + v = 0.552770798 Solving 0.1666666667 + v = 0.552770798 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.1666666667' to each side of the equation. 0.1666666667 + -0.1666666667 + v = 0.552770798 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + v = 0.552770798 + -0.1666666667 v = 0.552770798 + -0.1666666667 Combine like terms: 0.552770798 + -0.1666666667 = 0.3861041313 v = 0.3861041313 Simplifying v = 0.3861041313

Subproblem 2

v + 0.1666666667 = -0.552770798 Simplifying v + 0.1666666667 = -0.552770798 Reorder the terms: 0.1666666667 + v = -0.552770798 Solving 0.1666666667 + v = -0.552770798 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-0.1666666667' to each side of the equation. 0.1666666667 + -0.1666666667 + v = -0.552770798 + -0.1666666667 Combine like terms: 0.1666666667 + -0.1666666667 = 0.0000000000 0.0000000000 + v = -0.552770798 + -0.1666666667 v = -0.552770798 + -0.1666666667 Combine like terms: -0.552770798 + -0.1666666667 = -0.7194374647 v = -0.7194374647 Simplifying v = -0.7194374647

Solution

The solution to the problem is based on the solutions from the subproblems. v = {0.3861041313, -0.7194374647}

See similar equations:

| x+3=15x-100+50x-25 | | 4/1 | | 3+3x+1-x=9 | | 6x^2+29x=-28 | | -5x+3(2x+11)=44 | | -3(2-y)-(7y+16)=-4(y-11) | | 16u^2-32u=9 | | 7x+8=7x-10 | | f(x)=x^3+7x^2+11x-3 | | 3+x=y | | 3+x/3=18 | | 20/1 | | (8x^3-7x^2+6x)+(3x^3+9x^2-14x)= | | m^2-8m+15=0 | | 29-(x+5)=7x-8 | | 2/3(x-4)+2=8 | | 3+x+3+x=3x | | 59-8x=-4x-29 | | (4-2)+3= | | 7x-8=7x+10 | | y=3/5x-3 | | (4+3)-2= | | (4*2)(3)= | | 3/5t-2=7 | | (2+4)(3)= | | 5x-10y=80 | | 42x^2+22x=4 | | X^2+14=-5 | | -164=5x+7(3x+10) | | 5/2c-8=-3 | | 6x-2(x-3)=10 | | -3(8-2a)+6(a-5)=-a+4(3-a) |

Equations solver categories